System PDE:
$$u_t = r_u u(1-u)\,G_1(v) - c_u\,u\,G_2(v) + D_u \Delta u$$ $$v_t = a\,v(1-v)(v-v_c) + \gamma(1-v) - \alpha u v + D_v \Delta v$$
Switch functions:
$$G_1(v) = \frac{1}{1 + e^{-k_1 (v - v_c)}}$$ $$G_2(v) = \frac{1}{1 + e^{-k_2 (v_k - v)}}$$
r_u (growth): 10
v_c (growth threshold): 0.4
v_k (death threshold): 0.55
a (environment cubic amp): 12
alpha (consumption): 3.6
gamma (recovery): 0.8
Du: 0.0005
Dv: 0.0001
Speed: 1.0