System PDE:
$$u_t = r_u u(1-u)\,G_1(v) - c_u\,u\,G_2(v) + D_u \Delta u$$ $$v_t = a\,v(1-v)(v-v_c) + \gamma(1-v) - \alpha u v + D_v \Delta v$$
Switch functions:
$$G_1(v) = \frac{1}{1 + e^{-k_1 (v - v_c)}}$$ $$G_2(v) = \frac{1}{1 + e^{-k_2 (v_k - v)}}$$
Init:
Random
Smooth
Flat
Population Sin Wave
Population Sin 2D
Population Spiral
Blank
View:
Population (u)
Environment (v)
Boundary:
Neumann
Periodic
Dirichlet
r_u (growth):
10
v_c (growth threshold):
0.4
v_k (death threshold):
0.55
a (environment cubic amp):
12
alpha (consumption):
3.6
gamma (recovery):
0.8
Du:
0.0005
Dv:
0.0001
Speed:
1.0
Reset